A Neuro-Fuzzy System that Uses Distributed Learning for Compact Rule Set Generation
نویسندگان
چکیده
ARTMAP based architectures have several desirable properties that make them very suitable for pattern classification problems. However, they suffer from category proliferation. Distributed coding has been proposed as a solution for memory compression. dARTMAP neural network has been introduced as a modification of Fuzzy ARTMAP that, due to distributed learning, achieves code compression while fast stable learning is retained. A critical analysis of dARTMAP architecture and performance in pattern recognition problems is presented here, concluding that distributed learning excels the original Fuzzy ARTMAP only under certain geometrical configurations of the output classes, or in the presence of noise in the training set. A new architecture called dFasArt is presented here, introducing distributed learning into FasArt neuro-fuzzy system, which is more suitable for identification tasks, showing that the advantages of distributed code can be extended to other neural architectures. Experimental results show dFasArt performs similarly to dARTMAP in classification tasks, while being less sensitive to pattern presentation order.
منابع مشابه
Improvement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملRFCMAC: A novel reduced localized neuro-fuzzy system approach to knowledge extraction
Neuro-fuzzy system (NFS) and especially localized NFS are powerful rule-based methods for knowledge extraction, capable of inducing salient knowledge structures from data automatically. Contemporary localized NFSs, however, often demand large features and rules to accurately describe the overall domain data, thus degrading their interpretability and generalization traits. In light of these issu...
متن کاملNeuro-fuzzy rule generation: survey in soft computing framework
The present article is a novel attempt in providing an exhaustive survey of neuro-fuzzy rule generation algorithms. Rule generation from artificial neural networks is gaining in popularity in recent times due to its capability of providing some insight to the user about the symbolic knowledge embedded within the network. Fuzzy sets are an aid in providing this information in a more human compre...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کامل